ClearView is highly advanced test & measurement analyzer for audio and video quality, subjective viewing, recording and comparatively playing up to two 8K ultra high definition uncompressed sequences*. The product line provides a wide choice of quality analysis features and measurements that effectively quantify the human subjective experience.

With the convergence of voice, TV and data there is a need for multiple resolutions and processing methods to all screens - TV, PC and mobile. Therefore, the requirements of digital content distribution have increased dramatically. Evolving compression schemes from MPEG-2 to MPEG-4 and now JPEG 2000, HEVC and VC-9 have increased the need for tools that can properly analyze and track results.

Digital media can be reproduced at any resolution, assuming that one has the storage space and the bandwidth (the number of bits per second that can be sent through a given medium, such as fiber optic cable or the air). At some point, the level of resolution achieved by digitizing a signal will become so good that it is indistinguishable, given the limitations of our perception, from the source.

The most decisive task for product developers and media delivery networks is to create a product or service that can fit as many programs as possible into the available bit rates at the highest quality possible and to avoid low quality.

To this end, human perceptual video and audio quality analysis must be done.

Two ways exist to do this analysis:
- Perform in-depth analysis on problematic/difficult streams and judge the perceived video or audio quality
- Perform long-duration tests searching for drops/degradation in quality over hours, days or even weeks long test runs

In depth video quality analysis is a subjective notion. The most precise way to measure quality is to collect human observers and to ask them to judge the quality. This is an expensive and potentially inconsistent approach as human observers need to be judged to make sure that they can be trusted - i.e. their sight is good, they are not too tired or they are not color blind, etc. In the end, a mean opinion score (MOS) is computed for each test. Details for setting up a subjective test can be found in Recommendation ITU-R BT.500-12 - Methodology for the subjective assessment of the quality of television pictures.

A number of algorithms have also been developed to estimate perceived quality in a precise way. The results of these algorithms are then correlated against correctly produced subjective data under ITU-R BT.500.12. The result is a perceptual measure of subjective quality.

The algorithms are divided into three general types:
- Full reference algorithms compare the processed and reference sequences
- No reference algorithms analyze only the processed
- Reduced reference algorithms extract specific information from the reference stream and use it when analyzing the processed stream

The ClearView Analyzer product line features four full reference scoring methods or scales:
- MOVIE: MOtion-based Video Integrity Evaluation index which is able to provide one of the most accurate perceptual video quality measurements
- MS-SSIM/DMOS: Multi-Scale Structural Similarity Image Quality Assessment on both MS-SSIM and DMOS scales, where DMOS is the difference between the mean opinion scores of the reference and processed video
- JND: The number of human observers that must be gathered to end up with at least one person who believes that the processed video is at least as good as the reference (just noticeable differences)
- PEAQ: Perceptual Evaluation of Audio Quality with two scales produced from a computerized model of the human ear, BS.1387 and BS.1118
- aFreq: Audio performance metric for finding gross errors versus each reference audio channel. aFreq includes an audio-video offset measurement or lip sync value for a selected channel in program.

The ClearView Analyzer product line includes four no-reference scoring methods:
- aPEAK: True-peak audio measurement per channel according to ITU-R BS.1770-3
- LKFS: Audio loudness measurement per program according to ITU-R BS.1770-3
- Spatial: Calculates the activity power of a video frame, a higher number indicates more changes in the frame
- Temporal: Calculates the changes between successive video frames, a zero indicates a frozen frame

*Sequences in ClearView are video, audio, VANC & timecode of any duration.
The best way to subjectively analyze and compare two different sequences is to look at them on the same video display. Using two different displays, even of the same type, requires vigilant calibration.

- Therefore, ClearView has many viewing modes that show two sequences using its built-in, full resolution video output or in a separate playback window on the desktop.*
- In side-by-side and split-mirror modes the sequences can be panned as only half of the image is showing.
- In seamless split mode part of the image is from the reference and the rest of the image is from a processed version of the video content.
- ClearView allows the split point to be moved interactively.

ClearView can also output the two sequences to two different displays. This is done using the multiple output viewing mode command.

Side-By-Side Viewing

Video sequences can be further analyzed as follows:
- Zooming into any picture area up to 16x
- Panning within the picture during zoom or split screen
- Identifying pixel values via mouse click
- Playing individual fields

Using the included command line interface play lists can be created to allow any view mode to be executed in a series.

ClearView A-B: An easy way to view pixel intensity differences between two images.
- Below a straight subtraction shows one pixel level intensity which may not be possible with some displays.
- Therefore, ClearView systems include A minus B with a Threshold and Addback command allowing users to see differences that are greater or less than a specific pixel intensity threshold as a selectable color.
- This also allows edge differences to stand out.

A minus B with Threshold = 20 View Mode

Colors green A>B; yellow B>A

These views are all simultaneously fed to the ClearView graphical user interface and to each of ClearView’s full resolution video outputs or, selectably, to a separate desktop window.

*A separate desktop playback window is a feature offered in ClearView starting with version 8.4.*
**PSNR**: The most widely used metrics are PSNR (Peak Signal-to-Noise Ratio) or MSE (Mean Squared Error). Both measure the mean error between input and output. PSNR expresses its result as a ratio of the peak signal expressed in dB. PSNR and MSE, while not performing a human perceptual video quality prediction, do serve an important role. PSNR is the objective metric included in all ClearView systems. It measures the absolute difference between two signals, which is completely quantifiable. This is very important in QA and device performance testing where the perceived quality has already been measured in the laboratory environment and what is needed is a PASS/FAIL indicator.

**Video Perceptual Quality Measurements**

**MOVIE**: The ClearView 8.2 version system provides a new video quality measurement, MOVIE, the MOtion-based Video Integrity Evaluation index which is able to provide an improved perceptual video quality prediction as an addition to others offered in ClearView systems up to this point. Additionally, MOVIE provides an incrementally accurate correlation to standards-based human subjective quality assessments versus other measurements by implementing an advanced method of defining and measuring spatial and temporal motion distortion in a localized multiscale framework. Therefore, MOVIE provides a leap forward by defining the time-space element and its effects on human perception of video quality as it applies to a full-reference measurement method. In ClearView the selections for Temporal MOVIE or Spatial MOVIE indices are included and overall MOVIE is a product calculation.

**MS-SSIM and DMOS**: The structural similarity approach provides an alternative and complementary way to accurately measure human perceptual video quality. It is based on a top-down assumption that the HVS is highly adapted for extracting structural information from a scene, and therefore a measure of structural similarity is an excellent approximation of perceived image quality. The idea is that the eye can recognize a shape even if part of it is missing. It has been shown that a simple implementation of structural similarity (SSIM) outperforms other perceptual image quality metrics. However, the SSIM index achieves the best performance when applied at an appropriate scale (i.e. viewer distance/screen height). Therefore, multi-scale structure similarity (MS-SSIM) has been defined. In MS-SSIM, the picture is evaluated at various resolutions and the result is an average of these calibrated steps and MS-SSIM out-performs simple SSIM even when the SSIM is correctly calibrated to the environment and data set. ClearView includes the algorithm developed by the University of Texas known as MS-SSIM and provides it on both DMOS (Differential Mean Opinion Score) and MS-SSIM scales. The measurements may be performed on luma (Y) and a combined score is provided for color difference channels (Cb, Cr).

**ClearView System Option - Sarnoff JND**: A well accepted perceptual video quality index method which simulates the functionality of the human visual system (HVS) components.

The method involves video/audio alignment, low pass filtering (to simulate the eye – video only), calculating the differences that affect the human eye/ear, blockiness, blurriness, noise, lack of dynamic range, loss of high frequencies, classifying the types of distortions, and generating a perceived quality number per frame. ClearView analyzers are optionally licensed with the algorithm developed by Sarnoff Corporation known as Picture Quality Ratio (PQR) and place it on the JND (Just Noticeable Differences) scale.
The ITU-R PEAQ (Perceptual Evaluation of Audio Quality) model is an “electronic ear” which performs an objective measurement of perceived quality of wide band (up to 20 kHz) audio signals using a computerized model of the human ear. This well accepted perceptual audio quality measurement method was developed jointly by experts from eight leading research laboratories and is an international ITU-R standard. It is ITU-R Recommendation BS.1387, “Method for objective measurement of perceived audio quality”.

The PEAQ model processes two audio signals to be compared (namely the original reference signal and the test version to be evaluated) and calculates a quality score similar to the mean opinion score that would be obtained from a formal subjective test. In this sense, the PEAQ model is considered as an “average listener”.

The perceptual rating generated by the PEAQ model represents the overall severity of the impairments in the test signal as compared to the reference. The ClearView system provides the user with two rating scales as shown on the right.

The ClearView analyzer features a full implementation of the ITU-R PEAQ model which has been certified by the Communications Research Centre Canada, one of the laboratories that developed the ITU-R PEAQ method.

The PEAQ measurement is an option for all ClearView system models. Option item CV-PEAQ.
Equipment Manufacturers want to accelerate the development of their processing algorithms. ClearView allows developers to compare performance of algorithms, quantitatively or subjectively judge them, and get detailed test log reports.

ClearView
- Imports many compressed or uncompressed file formats (video and audio file types listed on page 10)
- Records video and audio using standard baseband inputs like HD/SD/3G SDI, HDMI, Component, Composite or S-Video as well as digital or analog audio on XLR and embedded SDI
- Captures live from an IP network and demultiplexes the targeted stream for decoding and testing

Regardless of whether the sequence is imported as a file or recorded, a file is stored as YUV 4:2:2 or RGB 4:4:4.

ClearView can then:
- Automatically align the two sequences spatially and temporally
- Provide a subjective comparison of the two sequences using any of the viewing modes previously shown
- Score the video and audio quality on a perceptual scale using the MOVIE, DMOS, JND and PEAQ methods
- Objectively measure using PSNR

The perceptual scores and objective measurements can be saved to a log file, which contains all of the information about the sequences. The log file can be imported into Excel so as to be combined with other data and it can be dropped onto the ClearView GUI (shown on page 8) to restore the test session.

Ways to use ClearView:
1) Capture a sequence via HDSDI, 10 Gig IP or Gig IP to ClearView or output from ClearView to the processing unit. Simultaneously record the transmitted output from a hardware decoder or from an IP network directly.

2) Send a known sequence via SDI to the processing unit, record the output from a hardware decoder and compare this to a pre-recorded result - generating pass fail to a ClearView log file or command line script.
Content originators and entertainment service providers want to determine the optimal parameters to fit as many channels or streams into the delivery network as possible and reach an acceptable quality level. They also want to check the quality of the material after it has been compressed and packaged in a transport or program stream. To do this the ClearView analyzer will play a reference sequence to the processing unit and simultaneously record the decoder output or take a direct IP feed and decode internally for its uncompressed measurement operation.

ClearView then provides automatic source video versus processed video alignment methods, multiple comparison measurements and viewing modes.

ClearView
- Plays an uncompressed sequence through SD/HD/3G/Quad 4K SDI, HDMI or 10 Gig IP outputs to the processing unit
- Records, simultaneously, from the IP network or from a decoder via SD/HD/3G/Quad 4K SDI, HDMI or 10 Gig IP inputs
- Aligns spatially & temporally via single or multi-frame method or a frame for frame Exhaustive Alignment routine
- Judges the quality using MOVIE, DMOS, JND, and PEAQ
- Produces log files with the results (log files are text that can be examined as is or automatically exported to Excel)
- Drag and drop logs for recalling any test along with its synchronized side by side audio/video comparison

Another application for manufacturers, broadcasters or any entertainment service provider is using RTM to monitor quality and record performance faults in on-air or IP network quality of service from a long duration test. The RTM system can detect content specific, continuous or intermittent effects on audio or video quality.

RTM and RTM 4K - full reference audio/video quality monitor with error segment recording*
- Inputs source “reference” and downstream “processed” A/V through HDSDI up to 4K or via IP up to 1080i
- Measures the audio and video quality as PSNR or DMOS in real-time on live sources
- Measures the audio and video delay (lip-sync) in real-time
- Measures the audio loudness according to ITU-R BS.1770-3
- Measures each VANC line’s data line integrity with each line individually selectable
- Continuously reports min, max and average A/V quality and A/V delay to log files
- Records the failed portions of the A/V sequences, and alarms via audio beep tone if any of the above have fallen below a user set degradation threshold
- RTM is optionally combined with ClearView in the same system to provide both test applications

*See RTM data sheet for full feature description
Subjective Viewing Modes Now On Desktop or Broadcast Output
- In addition to playback on HDMI & HDSDI outputs, a separate desktop function is here
- Play sequences to a separate window on the desktop or to an external video monitor
- Apply side-by-side or any subjective viewing modes to assess quality at full resolution
- Use all interactive play modes, zoom, pan, and pixel value tools on either output type

Perceptual Quality Metrics
- MOVIE: MOTion-based Video Integrity Evaluation index with separately selectable Temporal MOVIE and Spatial MOVIE indices
- MS-SSIM: Provided on DMOS and MS-SSIM scales
- Sarnoff JND*: On the Just Noticeable Differences scale
- PEAQ*: ITU-R BS.1387 method on BS.1387 or BS.1116 scales for audio quality

Objective Metrics
- PSNR: Peak Signal to Noise differences in video
- aFREQ: Audio Frequency conformance measurement to find gross errors in audio performance versus a reference, provides lip-sync measurement in milliseconds

No Reference (Reduced Reference) Metrics
- aPEAK: True-peak audio measurement per channel according to ITU-R BS.1770-3
- aLKFS: Audio loudness measurement per program according to ITU-R BS.1770-3
- Spatial: Calculates the activity power of a frame within the frame
- Temporal: Calculates the changes between successive frames

*JND and PEAQ metric licenses are options on all ClearView models, items CV-JND and CV-PEAQ.
There are several ways to record live A/V sequences into ClearView. All ClearView systems provide a combination of broadcast video/audio inputs as well as IP input capabilities. Broadcast video input interfaces are HDSDI, HDMI or new 10 Gigabit Ethernet, all with embedded audio. IP inputs are Gigabit Ethernet with automatic decoding of compressed video streams. All interfaces provide several options for capturing one or two live inputs as outlined below.

**Broadcast Inputs**

ClearView systems hold several options for uncompressed video with audio source recording. The Broadcast record tab allows a selection of single input, dual input or input/output modes and the configuration menu options are tailored to the input interfaces installed in your ClearView model.

This includes uncompressed 10 Gig IP transport cages, HDSDI or HDMI inputs.

ClearView systems automatically detect the input format for record operations. Sequences are stored as unmodified, fully uncompressed video and audio with support for Dolby® audio then saved for instant recall and playback operations from a user designated ClearView library file folder and sequence name.

**IP Input - Ethernet Stream Decoding and Recording**

Record 1 IP Input - A single input mode that records a video sequence as sensed at the IP multicast address and port specified within the IP configuration menu as pictured to the right. *IP Input, if MPEG, decodes up to 1080i (excludes 4K, 8K).*

Record 2 Inputs - Dual IP or IP with Broadcast input records sequences from two separate inputs or mix of inputs. Each input selection is provided with individual menus to set up Broadcast or IP input parameters. Each IP menu contains transformation settings for scale, crop, de-interlace, rate change and position for matching of source content to the IP network delivered video sequence format for testing.

Record While Playing - In this mode the Broadcast output selection will play a sequence loaded into Viewport A for input to an IP network processor or device under test with an IP output. The ClearView IP Input can then simultaneously decode and capture the processed IP stream as uncompressed video.

**From ClearView**

The ClearView Output tab has new features with version 8.5 providing an ability to internally copy sequences with burned in frame numbers to facilitate frame tracking. Sequences containing Dolby audio can now be automatically trimmed to correct packet boundaries in order to eliminate the potential for audio artifacts or discontinuities while playing sequences in a loop. The ClearView Output tab also continues to provide the unique ability to copy a sequence to a new length or a combination of two sequences set into any View Mode so that selected picture comparisons can then be exported as YUV, AVI or QuickTime formats for external review by most of today’s computer desktop graphics outputs.
ClearView File Importer is a comprehensive solution for importing files into ClearView. It is a stand-alone application provided with ClearView systems allowing complete control and thumbnail viewing of imported uncompressed sequences that are automatically inserted into a ClearView library for use within a ClearView test routine.

ClearView File Importer GUI

- User confirmable file adjustments:
  - Import HDR video in BT.2020 (PQ) or BT.2100 (HLG)
  - Import ICtCp native color format or record it from HDSDI
  - Decoded or imported frame size, rate
  - First/last frames to import
  - 3:2 pull down insertion or removal
  - Bit depth conversion (8 to 10 or 10 to 8)
  - Crop source with input values or interactive box
  - Scale video resolution up or down to x, y / w, h
  - Variable image and canvas resolution
  - Truncate to legal broadcast values (yes/no)
  - Import audio and closed caption data

Imported File Formats (partial list):
- Accon YUV CCIR 601 8-bit
- ARI Raw Bayer Pattern
- Avid AVR, DS HD/SD, DV (*.gen), DNxHD
- Avid BMD, Y’CbCr, OMFI (*.omf, *.omfi)
- AVID JR IF, JPEG, Meridian, RGB, Y’CbCr
- Cineon (*.cin), CineWave
- DPX RGB 8, RGB 10, Y’CbCr 4:2:2
- DV (*.dv, *.dif), Digital Negative (*.dng)
- DVS Direct File Format (*.dvs)
- DVSD, DV25, DV50, MPEG-I, mJPEG, DigiSuite
  - H.261, H.263, H.264, H.265, HDV
- Headerless/RAW (*.hdr, *.yuv, *.rgb, *.raw)
- HiCon SLB32 RFB format (*.sib)
- Image (*.gif, *.jpg, *.png), Jaleo Direct Format (*.js)
- JPEG, JPEG2000, Media 100 Mjpeg
- Microsoft AVI (*.avi), BMP, DIB Files (*.dps)
- MJPEG, MPEG 1 4:2:0 (*.mpg, *.mpeg)
- MPEG-2 Elem. Stream, (4:2:0/4:2:2), MPEG2 (*.m2v)
- MPEG-2 Program Stream, (4:2:0/4:2:2)
- MPEG-2/4 in Transport Stream, (4:2:0/4:2:2)
- MPEG-2/4 in MPTS (4:2:0, 4:2:2), MPEG4 (*.m4v)
- MPEG-H HEVC/H.265 4:2:0 Main Profile (*.h265)
- MXF Format (DOP, DV, DVCPro50, MPEG, IMX, OP1a)
- Newtek Video Toaster (*.rtv)
- Phantom Support (*.cine), PhotoShop FilmStrip (*.flm)
- Photo CD PCD, Photoshop PSD, Portable anymap PN M
- Portable Bitmap Format PNG
- Portable grayscale PGM
- Portable pixmap PPM
- Profile GXF Format/SMPT-E-360 (*.gxf)
- QuickTime Movies (*.mov)
- QuickTime formats w/ proper codec, ProRes, etc...
- RealVideo (*.ra, *.rm, *.ram), Red Camera Stream (*.r3d)
- Run-Length encoding (rle)
- Sony XDCam, SGI Movie Format (*.mv), SGI RGB
- Silicon Image Bayer (*.siv), Sun Raster (*.ras)
- Targa TGA, ICB, VDA, VST, Targa 3000, TIFF, TIF
- v210 Y’CbCr 10 Bit, VC-1 Pro, Viewstore (*.vst)
- vcap, vcap10, Windows Media (*.asf, *.wmf, *.wmv)
- Y’CbCr 8/10, Y’CbCr, RGB, YCrCb 8/RGB

Audio Import Formats:
- Dolby® Digital Plus Professional Decoder (included in v8.5)
- MPEG-2 Layer 1 (*.mp1)
- MPEG-2 Layer 3 (*.mp3)
- Waveform Audio (*.wav)
- Adaptive Multi-rate (*.amr)
- Audio Interchange File Format (*.aiff)
- Windows Media Audio (*.wma)
- Advanced Audio Coding (*.aac)

Exported File Formats:
- QuickTime with up to 16 audio channels
- Microsoft AVI (*.avi), BMP
- Headerless/RAW (*.yuv, *.rgb, *.raw)
### WFM - Waveform Monitor / Vectorscope*

ClearView systems include WFM, a comprehensive signal tool for input and playback specification display.

#### Waveform Monitor
- Displays the levels of the Y, Cb and Cr from the left of the picture to the right of the picture with all the lines summed into one graph.

#### Vectorscope
- Depicts a traditional Cb by Cr X-Y display with overlaid reference graticule. Color accurate graticules automatically switch between SD, HD and UHD color spaces.

#### Chromaticity Scope
- Provides a visual representation of the color in a video across all the colors of visible light. For a particular Y’CbCr range (BT.2020, Rec.709,CCIR-601) a triangle can be super imposed.

#### Histogram
- Provides an overview of the tonal range of each color in the picture.

#### Picture View
- Shows the video signal, to confirm the source is correct and to display time code location.

#### Data View
- Allows access to the raw pixel values being monitored on the HDMI or SDI input.

---

### Product Feature Matrix

<table>
<thead>
<tr>
<th>Features</th>
<th>ClearView Extreme 8K</th>
<th>ClearView Extreme 4K</th>
<th>CV-Extreme w/RTM 4K</th>
<th>CV-Extreme IP + SDI 4K</th>
<th>ClearView Shuttle 4K</th>
<th>ClearView QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR, aFreq, aPeak, Lip-sync metrics</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Perceptual Video and Audio Metrics</td>
<td>JND,PEAQ optional</td>
<td>JND,PEAQ optional</td>
<td>JND,PEAQ optional</td>
<td>JND,PEAQ optional</td>
<td>JND,PEAQ optional</td>
<td>All optional</td>
</tr>
<tr>
<td>Subjective Viewing Modes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Subjective Side-By-Side Max Play Rate</td>
<td>7680X4320p30</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>1920X1080p60</td>
</tr>
<tr>
<td>Max Video Rec. Rate w-16 Audio chs.</td>
<td>7680X4320p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>1920X1080p60</td>
</tr>
<tr>
<td>Max Video Play Rate w-16 Audio chs.</td>
<td>7680X4320p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>1920X1080p60</td>
</tr>
<tr>
<td>Max Simultaneous Play &amp; Record Rate</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>3840X2160p60</td>
<td>1920X1080p60</td>
<td>1920X1080p60</td>
</tr>
<tr>
<td>Real-Time Measurement Input Rate</td>
<td>Optional</td>
<td>Optional</td>
<td>2160p 50/60</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Disk Storage Capacity Examples - In Minutes</td>
<td>54 or 108 of 7680X4320p60 Hz YUV10</td>
<td>67,162, 323 3840X2160p60 Hz YUV10</td>
<td>67,162, 323 3840X2160p60 Hz YUV10</td>
<td>67,162, 323 3840X2160p60 Hz YUV10</td>
<td>33 or 67 of 3840X2160p60 Hz YUV10</td>
<td>360 min of 1080i 60Hz YUV8</td>
</tr>
<tr>
<td>Metric Log Grapher, RTM Log Grapher</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Waveform Monitor/Vectorscope - WFM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Option</td>
</tr>
<tr>
<td>ClearView File Import Features</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HDSDI Input, including 8 and 10 bit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Y’PbPr, S-Video, Composite Input</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HDSDI Output (See Interfaces Specs)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Y’PbPr, S-Video, Composite Output</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>See Models</td>
</tr>
<tr>
<td>HDMI Video Output - Max Rate</td>
<td>2160p60,4:2:0</td>
<td>2160p60,4:2:0</td>
<td>2160p60,4:2:0</td>
<td>2160p60,4:2:0</td>
<td>2160p60,4:2:0</td>
<td>1080p60,4:2:2</td>
</tr>
<tr>
<td>IP Record - Max Decode / Record Rate</td>
<td>1080i60 (2)</td>
<td>1080i60 (2)</td>
<td>1080i60 (2)</td>
<td>1080i60 (2)</td>
<td>1080i60 (2)</td>
<td>Option</td>
</tr>
<tr>
<td>Timecode record and play</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USB Ports - 3.0, 2.0</td>
<td>10,2</td>
<td>10,2</td>
<td>10,2</td>
<td>10,2</td>
<td>4,4</td>
<td>4,4</td>
</tr>
<tr>
<td>Giga-Bit Ethernet Ports</td>
<td>2</td>
<td>2</td>
<td>2 (1 via USB)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chassis and Rack Mount Type</td>
<td>3RU Kit</td>
<td>3RU Kit</td>
<td>3RU Kit</td>
<td>3RU Kit</td>
<td>2RU Ears</td>
<td>2RU Ears</td>
</tr>
</tbody>
</table>

---

* WFM is included in new systems shipped with v8.4 starting in April 2016
ClearView Product Models and Specifications

ClearView Extreme 4K and 8K Systems

ClearView Extreme 4K: Model # CV-S8084-4K-5 or -12 or -24
A/V Interfaces: CV-SDI-I0-4K2 (2)
Accessories: 3 RU rack kit, keyboard, mouse, mirror boot drive, manual, A/V cable kits (2)
See A/V Interface descriptions below

ClearView Extreme 8K: Model #s CV-S8088-8K-16 or -32
A/V Interfaces: CV-SDI-I0-8 (2)
Accessories: 3 RU rack kit, keyboard, mouse, mirror boot drive, manual, sync generator w/BNC cables

ClearView Extreme IP: Model #s CV-S2044-IP or -12 or -24
A/V Interface: CV-IP-I0-HD (1)
Model Option: CV-S2044-RTM, or RTM-5
- Applies RTM license with RTM 3G function

ClearView Shuttle 4K and IP Systems

ClearView Shuttle 4K: Model # CV-S2044 or CV-S2044-5
A/V Interface: CV-SDI-I0-4K2 (1)
Accessories: Hard travel case, keyboard, mouse, OS recovery disk, printed manual, cable kit, rack ears

ClearView QA: HD and SD Test Systems

ClearView QA: Model # CV-S2041-QA
A/V Interface: CV-SDI-I0-LHI (1)

ClearView QA with Dual HDSDI: Model # CV-S2042-QA
A/V Interface: CV-SDI-I0-CVD22 (1)

ClearView Product A/V Interface Specifications

CV-SDI-I0-8:
The two interfaces applied on all CV-S8088-8K models include:
- 16 BNC video connections
- 1 sync generator, with cables

CV-SDI-I0-4K2:
CV-Extreme-4K applies two, CV-Shuttle-4K applies one with:
- Quad SMB to BNC cable
- Analog breakout cable
- Mini HDMI to HDMI cable

CV-IP-I0-HD:
- Requires one or two SFPs to be purchased separately and applied for I/O function

ClearView Extreme 4K and 8K Systems with RTM 4K

ClearView and RTM 4K in Combination:
- RTM license included for RTM 4K function
A/V Interfaces: See base models above.

ClearView QA Model with Dual HDSDI

All product design and specifications are subject to change without notice or obligation. Video Clarity, Inc. Dolby and the Double-D symbol are registered trademarks of Dolby Laboratories.